0,1,···,n-1这n个数字排成一个圆圈,从数字0开始,每次从这个圆圈里删除第m个数字(删除后从下一个数字开始计数)。求出这个圆圈里剩下的最后一个数字。
例如,0、1、2、3、4这5个数字组成一个圆圈,从数字0开始每次删除第3个数字,则删除的前4个数字依次是2、0、4、1,因此最后剩下的数字是3。
示例 1:
输入: n = 5, m = 3
输出: 3
示例 2:
输入: n = 10, m = 17
输出: 2
这个问题是以弗拉维奥·约瑟夫命名的,他是1世纪的一名犹太历史学家。他在自己的日记中写道,他和他的40个战友被罗马军队包围在洞中。他们讨论是自杀还是被俘,最终决定自杀,并以抽签的方式决定谁杀掉谁。约瑟夫斯和另外一个人是最后两个留下的人。约瑟夫斯说服了那个人,他们将向罗马军队投降,不再自杀。约瑟夫斯把他的存活归因于运气或天意,他不知道是哪一个
真是一个有趣的故事
首先,长度为 n 的序列会先删除第 m % n 个元素,然后剩下一个长度为 n - 1 的序列。
那么,我们可以递归地求解 f(n - 1, m),就可以知道对于剩下的 n - 1 个元素,最终会留下第几个元素,我们设答案为 x = f(n - 1, m)。
由于我们删除了第 m % n 个元素,将序列的长度变为 n - 1。
当我们知道了 f(n - 1, m) 对应的答案 x 之后,我们也就可以知道,长度为 n 的序列最后一个删除的元素,应当是从 m % n 开始数的第 x 个元素。因此有 f(n, m) = (m % n + x) % n = (m + x) % n。
假设初始只有1个人,序号为0,则只能选0。
假设第n-1次选中x,则第n次会选中(x+m)%n
1 | class Solution { |