汇芳书院

专注计算机视觉、机器学习、分布式计算等领域, 兼聊投资、写作、生活

0%

三数之和

给你一个包含 n 个整数的数组 nums,判断 nums 中是否存在三个元素 a,b,c ,使得 a + b + c = 0 ?请你找出所有和为 0 且不重复的三元组。

注意:答案中不可以包含重复的三元组。

示例 1:

输入:nums = [-1,0,1,2,-1,-4]
输出:[[-1,-1,2],[-1,0,1]]
示例 2:

输入:nums = []
输出:[]
示例 3:

输入:nums = [0]
输出:[]


暴力法

无法通过OJ

1
2
3
4
5
6
7
8
9
10
11
12
13
14
class Solution:
def threeSum(self, nums: List[int]) -> List[List[int]]:
n = len(nums)
result = list()
for i in range(n):
for j in range(i+1, n):
for k in range(j+1, n):
if nums[i]+nums[j]+nums[k] == 0:
tmp = [nums[i], nums[j], nums[k]]
tmp.sort()
if tmp in result:
continue
result.append(tmp)
return result

先排序然后双指针

j代表的循环,双指针,k均摊到每次需要移动1次,所以本轮循环时间复杂度为O(n)
排序时间复杂度O(nlogn), 两轮循环时间复杂度O(n^2)
整体取大值为时间复杂度O(n^2)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
class Solution:
def threeSum(self, nums: List[int]) -> List[List[int]]:
n = len(nums)
result = list()
nums.sort()

for i in range(n):
if i > 0 and nums[i] == nums[i-1]:
continue
# print(n,i)
target = -nums[i]
k = n - 1
for j in range(i+1, n):
# 需要保证j和前一个不同
if j > i+1 and nums[j] == nums[j-1]:
continue
# 选定i,j后选k
while j < k and nums[k] + nums[j] > target:
k = k - 1
if j == k:
break
if nums[k] + nums[j] == target:
result.append([nums[i],nums[j],nums[k]])
return result
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
class Solution {
public:
vector<vector<int>> threeSum(vector<int>& nums) {
vector<vector<int>> ans;
int n = nums.size();

sort(nums.begin(), nums.end());
for (int i = 0; i < n; i++){
if (i > 0 && nums[i] == nums[i-1]){
continue;
}
int target = -nums[i];
int k = n-1;
for (int j = i+1; j < n; j++){
if (j > i+1 && nums[j] == nums[j-1]){
continue;
}
while (j < k && nums[j] + nums[k] >target){
k = k - 1;
}
if (j == k){
break;
}
if (nums[j] + nums[k] == target){
ans.push_back({nums[i], nums[j], nums[k]});
}
}
}
return ans;

}
};
坚持原创分享,您的支持将鼓励我继续创作

欢迎关注我的其它发布渠道

------------- 本文结束,感谢阅读 如有问题可留言交流 -------------